Weakly Coupled Quark Gluon Plasmas

Peter Arnold, University of Virginia

Notice

This presentation has been carefully purged of anything that might cause embarassment to the laboratory.

blackbody radiation

$k_BT \sim 0.5 \text{ MeV}$

$k_{\rm B}T \sim 50~{ m MeV}$

Higher T → higher density

$k_BT \sim 200 \text{ MeV}$

$k_BT >> 200 \text{ MeV}$

Also: <u>Asymptotic Freedom</u>

Higher temperature \longrightarrow smaller coupling α_s

Why bother with weak coupling?

It's one of the few limits where we can do calculations from first principles.

- Lattice simulations imaginary time: difficult to apply to real-time response.
- Consider *T* very large so that running coupling $\alpha_s(T)$ is small.
- Change the theory (add lots of supersymmetry, take # colors to infinity) and then use AdS/CFT methods to study limit of *really* big coupling.

Isn't weak coupling easy?

Counter-example

$$V(x)\sim \omega_0^2 x^2 + g^2 x^4$$

Note 1: problems with perturbation theory if T high enough.

Note 2: For fixed T, $\omega_0 \longrightarrow 0 ==>$ non-perturbative. For gauge theory, $\omega_k \sim k \longrightarrow 0 ==>$ non-perturbative.

Moral: small coupling expansion not the same as the perturbative expansion.

Isn't weak coupling easy?

Counter-example

$$V(x) \sim \omega_0^2 x^2 + g^2 x^4$$

Note 1: problems with perturbation theory if T high enough.

Note 2: For fixed T, $\omega_0 \longrightarrow 0 =$ ==> non-perturbative. For gauge theory, $\omega_k \sim k \longrightarrow 0 =$ non-perturbative.

Moral: small coupling expansion not the same as the perturbative expansion.

Example:
$$P = \#T^4[1 + \#g^2 + \#g^3 + g^4(\# \ln g + \#) + \#g^5 + g^6(\# \ln g + \#) + \cdots]$$
non-perturbative

Isn't weak coupling easy?

Counter-example

$$V(x) \sim \omega_0^2 x^2 + g^2 x^4$$

Note 1: problems with perturbation theory if *T* high enough.

Note 2: For fixed T, $\omega_0 \longrightarrow 0 ==>$ non-perturbative. For gauge theory, $\omega_k \sim k \longrightarrow 0 ==>$ non-perturbative.

Moral: small coupling expansion not the same as the perturbative expansion.

Example:
$$P = \#T^4[1 + \#g^2 + \#g^3 + g^4(\# \ln g + \#) + \#g^5 + g^6(\# \ln g + \#) + \cdots]$$

units: $\hbar = c = k_{\mathrm{B}} = 1$

non-perturbative

Deconfinement as Debye Screening

Potential energy between 2 charges in vacuum

Deconfinement as Debye Screening

Higher temperature → smaller Debye radius

Deconfinement as Debye Screening

In a medium with free charges:

Higher temperature → smaller Debye radius

The Debye effect screens electric fields. In contrast:

Magnetic fields are <u>not</u> screened in a plasma.

So

QED: magnetic forces are still long range

QCD: could there be confinement of colored currents?

no long range colored B fields?

Version for particle theorists: Do spatial Wilson loops still have area-law behavior?

YES, and at very short distances too!

$$n_{\text{Bose}} = \frac{1}{e^{\beta E} - 1} \to \frac{T}{E} \quad \text{as} \quad E \to 0$$

For massless bosons,

$$E \sim p \sim \alpha T$$
 \longrightarrow $n_{\text{Bose}} \sim \frac{1}{\alpha}$

Photons don't directly interact with each other, but gluons do.

Result: Perturbation theory breaks down for gluons with $p \sim \alpha T$.

costs
$$\left| \frac{g}{g} \right|^2 \sim \alpha$$

$$n_{\text{Bose}} \sim \frac{1}{\alpha}$$

costs
$$\left| g \right|^2 \sim \alpha$$
 for extra interaction $n_{\text{Bose}} \sim \frac{1}{\alpha}$ for density of extra gluons

total

Summary

Note: "g" is QCD analog of "e"

electric screening at $\xi_D \sim \frac{1}{gT}$ — no charge confinement

no traditional magnetic screening \rightarrow current confinement at $\frac{1}{g^2T}$

Long distance physics is hydrodynamics, not colored MHD.

Landau-Pomeranchuk-Migdal (LPM) effect

What is the LPM Effect?

A coherence effect that complicates calculations of bremsstrahlung or pair production when a very high energy particle scatters from a medium.

Places it comes up in QED

- Very high energy cosmic rays showering in the atmosphere.
- Certain beam dump experiments designed to measure the LPM effect.

Places it comes up in QCD

• Energy loss of high energy jets in a quark-gluon plasma.

• Complete leading-order calculations of the viscosity and other transport coefficients of a weakly-coupled quark-gluon plasma.

The LPM Effect

Naively

brem rate ~ $n\sigma v$ ~ (density of scatterers) \times

Problem

At very high energy,

probabilities of brem from successive scatterings no longer independent;

brem from several successive (small angle) collisions not very different from brem from one collision.

Result: a reduction of the naive brem rate.

Example: stopping distance (in a infinite medium)

If LPM effect ignored: stopping distance $\propto \ln E$

Actual result (weak coupling): stopping distance $\propto \left(\frac{E}{\ln E}\right)^{1/2}$

The LPM Effect (QED)

Warm-up: Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase \rightarrow coherent.]

Now: Just Lorentz boost above picture by a lot!

The LPM Effect (QED)

Note: (1) **bigger** E requires bigger boost \rightarrow more time dilation \rightarrow **longer formation length**

(2) big boost \rightarrow this process is very collinear.

An alternative picture

Are these two possibilities in phase? Or does the interference average to zero?

The important point:

The more collinear the underlying scattering, the longer the formation time.

Note: the formation length

depends on the net angular deflection during the formation length, which *depends on* the formation length

[Self-consistency \rightarrow standard parametric formulas for formation length.]

The LPM Effect (QCD)

There is a qualitative difference for **soft** bremsstrahlung.:

QED

- Softer brem photon \rightarrow longer wavelength
 - \rightarrow less resolution
 - → more LPM suppression

QCD

Unlike a brem photon, a brem gluon can easily scatter from the medium.

Softer brem gluon

- \rightarrow easier for brem gluon to scatter
- → less collinearity

Upshot: Soft brem more important in QCD than in QED (for high-*E* particles in a medium)

Experimental Measurement of LPM (QED)

2-dimensional Quantum Mechanics

But what we really need is the time evolution of the interference

[QED: Migdal '56]

random-averaged over the locations and types of scatterers in the plasma. Evolution of this interference is described by a 2-dimensional Schrödinger eq. with

$$H(t)=rac{p_{\perp}^2}{2\mathcal{M}}-rac{i}{i}\Gamma(x_{\perp},t)$$
 for non-uniform media non-Hermitian $Ex(1-x)$

What assumptions have been made?

$$\frac{\#}{gT} \ll \frac{\#}{g^2T}$$

$$H(t) = rac{p_\perp^2}{2\mathcal{M}} - rac{i}{\Gamma(x_\perp,t)}$$

$$\begin{pmatrix} \frac{t_0}{t_0} & t \end{pmatrix} \begin{pmatrix} \frac{t}{t_0} & t \end{pmatrix}$$

Numerically a bit tricky

$$\delta(x_\perp)$$
 at t_0

for $\Gamma=0$, for example

Harmonic Oscillator approximation

$$H(t)=rac{p_{\perp}^{2}}{2\mathcal{M}}-rac{i\hat{oldsymbol{q}}x_{\perp}^{2}}{}$$

Turns out to apply to thick media at very large energies: ln(E/T) >> 1

QM Perturbation theory (the opacity expansion)

$$H_0 + \delta H(t) = rac{p_\perp^2}{2\mathcal{M}} - i \, \Gamma(x_\perp,t)$$

Applies to thin media (but needn't be as thin as you might think)

Taxonomy of Jet Quenching Formalisms

Taxonomy of Jet Quenching Formalisms

But I'm going to restrict attention to

- effectively massless partons (no heavy quark jets)
- methods based on the preceding formalism

Apologies in particular to the "higher twist" (HT) jet quenching members of the community.

Taxonomy of Jet Quenching Formalisms

But I'm going to restrict attention to

- effectively massless partons (no heavy quark jets)
- methods based on the preceding formalism

Apologies in particular to the "higher twist" (HT) jet quenching members of the community.

Taxonomy of Jet Quenching Formalisms

Does it handle thick or thin media, or both?

Must deal with medium-vacuum interference:

Does it handle non-uniform, time-dependent media?

Does it only handle *soft* gluon bremsstrahlung?

Does it assume "static" scatterers?

Does it include final-state Bose enhancement or Fermi blocking factors for plasma particles?

$$rac{d\sigma_{
m el}}{d^2q_\perp}$$
 versus $rac{d\Gamma_{
m el}}{d^2q_\perp}=\int dq_z\int d^3p_2rac{d\sigma_{
m el}}{d^3q}\,f(p_2)\,[1\pm f(ec p_2-ec q)]$

Issues on this page are relevant if you want to get exactly the correct answer in the weak coupling limit.

	thickness	(non-uniform media?	x values	non-static scatterers and 1± <i>f</i> ?	exact for small α ?
Zakharov	any	yes	yes	any	no	no
BDMPS	anv	ves	ves	anv	no	no

BDMPS ('96)

Zakharov ('96)

	thickness		non-uniform media?	x values	non-static scatterers and 1± <i>f</i> ?	exact for small α ?
Zakharov	any	yes	yes	any	no	no
BDMPS	any	yes	yes	any	no	no

BDMPS ('96) Za equivalence ('98) Zakharov ('96)

a problem in non-Hermitian 2-D quantum mech.
$$H(t)=rac{p_{\perp}^2}{2\mathcal{M}}-rac{\imath}{\Gamma(x_{\perp},t)}$$

	thickness	(non-uniform media?	x values	non-static scatterers and 1± <i>f</i> ?	exact for small α ?
Zakharov	any	yes	yes	any	no	no
BDMPS	any	yes	yes	any	no	no
$\mathrm{BDMPS}_{\mathrm{model}}$	any	yes	yes	any	no	no

$$\stackrel{>}{\stackrel{>}{\stackrel{>}{\sim}}} \frac{1}{\stackrel{\checkmark}{\stackrel{}{\sim}} -} - \stackrel{-}{\stackrel{>}{\stackrel{>}{\sim}}} \frac{1}{\stackrel{\checkmark}{\stackrel{}{\sim}} -} - \stackrel{-}{\stackrel{>}{\sim}}$$

static

BDMPS ('96) Zakharov ('96) equivalence ('98)

a problem in non-Hermitian 2-D quantum mech.
$$H(t)=rac{p_{\perp}^2}{2\mathcal{M}}-rac{\imath}{\Gamma(x_{\perp},t)}$$

	thickness	(non-uniform media?	x values	non-static scatterers and 1± <i>f</i> ?	exact for small α ?
Zakharov	any	yes	yes	any	no	no
BDMPS	any	yes	yes	any	no	no
$\mathrm{BDMPS}_{\mathrm{model}}$	any	yes	yes	any	no	no
$\mathrm{BDMPS}_{\mathrm{HO}}$	thick	yes	yes	any	no	no

$$\begin{array}{c|c} & & \\ & &$$

	thickness	(non-uniform media?	x values	non-static scatterers and 1± <i>f</i> ?	exact for small α?
Zakharov	any	yes	yes	any	no	no
BDMPS	any	yes	yes	any	no	no
$\mathrm{BDMPS}_{\mathrm{model}}$	any	yes	yes	any	no	no
$\mathrm{BDMPS}_{\mathrm{HO}}$	thick	yes	yes	any	no	no
ASW	any/thin	ves	ves	<i>x</i> << 1	no	no

GLV = Gyulassy, Levai, Vitev; ASW = Armesto, Salgado, Wiedemann

	thickness	(non-uniform media?	x values	non-static scatterers and 1±f?	exact for small α ?
Zakharov	any	yes	yes	any	no	no
BDMPS	any	yes	yes	any	no	no
$\mathrm{BDMPS}_{\mathrm{model}}$	any	yes	yes	any	no	no
$\mathrm{BDMPS}_{\mathrm{HO}}$	thick	yes	yes	any	no	no
ASW	any/thin	yes	yes	<i>x</i> << 1	no	no
AMY	"infinite"	N/A	uniform	any	ves	ves

Summary

- Weak coupling ain't simple at high temperature lots of rich, complicated physics.
- The LPM effect is easy to understand qualitatively!
- There's a simple generalization of earlier formalisms for calculating the LPM effect in QCD that will yield exact results in the weak coupling limit if one simply uses weak-coupling results for the elastic scattering rate $d\Gamma_{\rm el}$.

Practical issue: How big is the next-order correction in α_s ?

result = (leading order) [1 + O(g)]

How big can α_s be before correction is 100% effect?

Example: $d^2\Gamma_{
m el}/dq_\perp^2$ [Caron-Huot '09]

Practical issue: How big is the next-order correction in α_s ?

```
result = (leading order) [1 + O(g)]
```

How big can α_s be before correction is 100% effect?

Example: $d^2\Gamma_{\rm el}/dq_\perp^2$ $\alpha_{\rm s}\sim 0.1\sim \alpha_{\rm s}(100~{
m GeV})$ [Caron-Huot '09]

Practical issue: How big is the next-order correction in α_s ?

result = (leading order)
$$[1 + O(g)]$$

How big can α_s be before correction is 100% effect?

Example: $d^2\Gamma_{\rm el}/dq_\perp^2$ $\alpha_{\rm s}\sim 0.1\sim \alpha_{\rm s}(100~{
m GeV})$ [Caron-Huot '09]

Similar to long-standing problem with the QCD equation of state:

 g^2 and g^3 corrections the same size when

$$\alpha_{\rm s} \sim 0.1 \sim \alpha_{\rm s} (100 {\rm ~GeV})$$

Folks have tried various resummations of perturbation theory...

Practical issue: How big is the next-order correction in α_s ?

result = (leading order)
$$[1 + O(g)]$$

How big can α_s be before correction is 100% effect?

Example: $d^2\Gamma_{\rm el}/dq_\perp^2$ $\alpha_{\rm s}\sim 0.1\sim \alpha_{\rm s}(100~{
m GeV})$ [Caron-Huot '09]

Similar to long-standing problem with the QCD equation of state:

Not clear how to generalize to dynamics...

Theoretical issue:

Weak coupling $\alpha_s(T) \ll 1$

If LPM effect ignored: stopping distance $\propto \ln E$

Actual result: stopping distance $\propto \left(\frac{E}{\ln E}\right)^{1/2}$

Strong coupling $\alpha_s \rightarrow \infty$ in large- N_c N=4 SUSY QCD

stopping distance $\propto E^{1/3}$

What's the first correction to the exponent for small α ?